
AN IMPROVED, VERSATILE PREPARATION OF TRANS-N-ACYL-N-ALKYL-1-AMINO-1,3-DIENES¹⁾ Wolfgang Oppolzer^{*}, Lothar Bieber and Eric Francotte. Département de Chimie Organique, Université de Genève, CH-1211 Genève 4, Switzerland.

Recent work in this laboratory has shown N-acylamino-1,3-butadienes ($\underline{4}$) to be valuable components for intramolecular Diels-Alder reactions. Thus, heating the dienes $\underline{4}$, \mathbb{R}^2 , $\mathbb{R}^3 = 3$ - or 4-alkenyl, readily provides complex hydrogenated indolines and quinolines²⁾ as illustrated by the stereocontrolled synthesis of the optically pure alkaloid pumiliotoxin-C³⁾. The previously unknown dienamides $\underline{4}$, 4,5 were obtained in 40 to 65% overall yield by successive treatment of the conjugated imines $\underline{2}^{8}$ with sodium methylsulfinylmethide and an acid chloride at -40° C.

This sequence apparently proceeds by a deprotonation $2 \div 3$, followed by a selective N-acylation of the nonisolated 1-aza-pentadienyl anions 3^{9} . Practical difficulties are the need for low reaction temperature and strong base; the latter also interferes with imines 2 containing other relatively acidic hydrogens¹⁰.

We now wish to report a simplified, more general and efficient preparation of the dienes 4. Thus, reaction of the conjugated imines 2 with various acid chlorides in the presence of tert. amines in an inert solvent provided directly the required dienamides 4 in high yields. This modified procedure presumably involves prior acylation of the imine 2 by the acid chloride $^{11)}$ to give a delocalized cation 5 which requires only weak bases for deprotonation giving the dienamides 4. Typical reaction conditions, product yields and spectral data are shown in Table 1.

Dienamide R ¹ R ²		R ³	isolated yield	m.p. °C			IR.(film) UV $v_{max}(cm^{-1})\lambda_{r}$	
			Jieiu	C	A'''A	~		max ⁽¹¹¹¹⁾ 10ge
<u>4a</u> H	CH ₂ Ph	Ph	808 ^a	78-80		7.00	1666,1638	256/4.25
<u>4b</u> H	CH ₂ Ph	$\rm OCH_2^{Ph}$	81% ^a	38-39	not	visible	1706,1640	254/4.44
<u>4c</u> H	cyclohexyl	Ph	70% ^a 59% ^b	54-56		6.43	1665sh,1632	250/4.17
<u>4d</u> H	cyclohexyl	OMe	65% ^{a,c}	38-40		6.80	1718,1643	257/4.50
<u>4e</u> H	cyclohexyl	Me	888 ^a	oil	not	visible	1670,1635	256/3.97
<u>4f</u> H	i−C ₃ H ₇	Ph	668 ^a	oil		6.70	1662,1632	254/4.14
<u>4</u> д Н	i-С ₃ Н ₇	Me	65% ^a	oil	not	visible	1677,1638	259/4.14
<u>4h</u> H	n-C ₆ H ₁₁	i-C ₃ H ₇	78% ^a	oil		7.04	1677,1637	265/4.45
<u>4i</u> H	n-C ₆ H ₁₁	OMe	83% ^a	oil		7.15	1730,1654	258/4.43
<u>4j</u> Me	n-C ₃ H ₇	OMe	49% ^b	oil		7.08	1720,1644	257/4.43
<u>4k</u> H	6-(2-nonenyl)	i-C ₃ H ₇	95% ^d	oil	not	visible	1675,1650 1638	274/3.92
<u>41</u> н	6-(2-nonenyl)	Ph	95% ^d	oil		6.50	1665,1630.	-
<u>4m</u> H	Ph	Ph	56% ^a	96-97		7.70	1655sh,1640	278/4.35

Table 1: Preparation and Properties of the Dienamides 4.

a) The imine 2 (10 mmol) was added to a stirred mixture of the acid chloride (10 mmol), diethylaniline (11 mmol) and toluene (20 ml) at +25°C. Stirring of the reaction mixture at +25°C for 15 h, filtration, evaporation of the filtrate and either chromatography or distillation (0.01 Torr) of the residue furnished the pure diene 4.

b) Following procedure a without isolation of the imine 2 (prepared in situ).

c) 5 mmol 2 / 6 mmol MeOCOCl / 7.5 mmol collidine / CH₂Cl₂ / O^oC / 24 h.
d) The imine 2 (3.6 mmol) was added to a stirred mixture of the acid chloride (4 mmol), triethylamine (8 mmol) and CH₂Cl₂ (20 ml) at -78^oC. The reaction mixture was warmed up to +5^oC over 16 h² and chromatographed (SiO₂, toluene/ ethyl acetate).

982

Thus, bases like triethylamine, pyridine and collidine were successfully used at temperatures below $+5^{\circ}C$ as exemplified by the preparation of 4d, 4k and 41. More conveniently, treatment of 2 with an acid chloride and diethylaniline at room temperature in toluene, filtration of the precipitated diethylaniline hydrochloride, followed by distillation of the filtrate furnished the pure dienamides 4 in good to excellent yields¹²⁾. For small scale preparations of 4 a rapid chromatography (5-fold amount of SiO₂) of the crude product appeared to be more suitable. The starting imines 2, in general purified by distillation in vacuo, may be also prepared in situ⁸⁾ in toluene (as shown for the preparation of 4c and 4j). Accordingly, a broad series of dienes 4, containing different substituents (R^1, R^2, R^3) are now easily obtained from a crotonaldehyde 1 (R^1) , primary amines (R^2) and acid chlorides (R^3) . This includes the diene anilide 4m $(R^2=Ph)$, and particularly, the hitherto inaccessible¹⁰⁾ N-acyl-N-benzyl-dienes 4a and 4b which represent doubly protected aminobutadiene equivalents¹³⁾. Both dienes 4a and 4b are crystalline solids which could be stored for <u>l</u> year without decomposition 14 , 4b at -30^o and 4a even at room temperature. Further work illustrating the reactivity of these dienes in intermolecular Diels-Alder additions is to be published ¹⁵⁾.

Financial support of this work by the <u>Fonds National Suisse de la Recherche</u> <u>Scientifique</u>, <u>Sandoz</u> Ltd., Basel and <u>Givaudan</u> SA, Vernier is gratefully acknowledged. We also thank Mr. <u>J.P. Saulnier</u> and Mrs. <u>F. Klöti</u> for careful measurements of NMR and mass spectra.

REFERENCES

- Reported in part by one of us (W.O) at the Symposium "Synthesis and Mechanism in Heterocyclic Chemistry", The Chemical Society, London, September 28, 1977.
- 2) W. Oppolzer and W. Fröstl, Helv. 58, 590 (1975).
- 3) W. Oppolzer, W. Fröstl and H.P. Weber, Helv. <u>58</u>, 593 (1975); W. Oppolzer and E. Flaskamp, Helv. <u>60</u>, 204 (1977); W. Oppolzer, L. Bieber, E. Flaskamp, and W. Fröstl, manuscript in preparation.
- 4)a) W. Oppolzer and W. Fröstl, Helv. <u>58</u>, 587 (1975). b) For earlier reported, more limited, approaches to related dienes see the preparation of l-phthalimido-1,3-butadiene: A. Terada, Nippon Kagaku Zasshi, <u>81</u>, 1773 (1960); A. Terada and K. Murata, ibid., <u>83</u>, 490 (1962) and of N(1-butadien-l-yl)-N-t-butyl-carbamoylchlorid: H. Kiefer, Synthesis, 1972, 39.

- 5) 1,3-Butadiene-carbamates, thiocarbamates and ureas, <u>4</u>, R¹=H, R²=OR, SR, NR₂, obtained very recently by Curtius degradation of conjugated dienoic acids, undergo efficient intermolecular Diels-Alder reactions⁶, thus allowing an elegant, alternative synthesis of racemic pumiliotoxin-C⁷. For a preparation of N-trichloroacetyl-1-amino-1,3-dienes, which show only moderate Diels-Alder reactivity see: L.E. Overman and L.A. Clizbe, J. Am. Chem. Soc. 98, 2352, 8295 (1976).
- 6) L.E. Overman, G.F. Taylor and P.J. Jessup, Tetrahedron Lett. <u>1976</u>, 3089;
 L.E. Overman, G.F. Taylor, C.B. Petty and P.J. Jessup, J. Org. Chem. <u>43</u>, 2164 (1978); L.E. Overman, G.F. Taylor; K.N. Houk and L.N. Domelsmith, J. Am. Chem. Soc. 100, 3182 (1978).
- 7) L.E. Overman and P.J. Jessup, J. Amer. Chem. Soc. <u>100</u>, 5179 (1978).
- 8) The imines <u>2</u> are readily available by condensation of crotonaldehydes <u>1</u> with primary amines: K. Taguchi and F. Westheimer, J. Org. Chem. <u>36</u>, 1570 (1971); see also ref. 2.
- 9) For selective C,2-substitutions of 1-azapentadienyl anions <u>3</u> by alkyl halides and nitriles see: K. Takabe, H. Fujiwara, T. Katagiri and J. Tanaka, Tetrahedron Lett. <u>1975</u>, 1237, 4375.
- 10) The failure to obtain N-acyl-N-benzyl-1-amino-1,3-butadienes by this route may be attributed to predominant abstraction of a benzylic proton in $\frac{2}{(R^2 = CH_2C_2H_5)}^{4a}$.
- 11) In contrast, previous attempts to convert $\underline{2}$ to $\underline{4}$ using acid anhydrides/ triethylamine have failed ^{4a)}.
- 12) We thank Dr. P. Fünfschilling, Sandoz Ltd, Basel for suggesting to us these particular reaction conditions.
- For the preparation and use of monoprotected aminobutadiene equivalents see ref. 5.
- 14) M.p., spectral and chromatographic evidence. This stability compares favorably with that of some diene carbamates, prepared from isocyanates⁵⁾.
- 15) W. Oppolzer, L. Bieber, E. Francotte and R. Ahmed, manuscript in preparation.

(Received in UK 2 January 1979)